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Abstract

In this paper, a recently developed method called the moving element method is adopted for the dynamic analysis of

half-space continuum under moving load. Plane strain condition is assumed and the continuum is discretised into ‘‘moving

elements’’. These moving elements are not physical elements fixed to the continuum but are conceptual elements that

‘‘flow’’ with the moving load through the continuum. The method eliminates the need of keeping track the location of

moving load relative to the element mesh. Numerical examples involving different load types such as strip load and

concentrated load moving on half-space and layers on half-space are presented. The numerical results are verified against

solutions obtained by alternative methods.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Analytical methods were used in earlier research works to study moving load on continuum. Sneddon [1]
first used Fourier integral transformation method to determine stress distribution in half-space due to the
application of moving external pressure to its surface moving at subsonic velocity. Cole and Huth [2] extended
the solution procedure to treat transonic and supersonic cases. Niwa and Kobayashi [3] further developed the
method by considering other load types such as uniformly distributed and concentrated line loads acting
normal or tangential to the surface of elastic half-space. Ang [4] and Payton [5] both considered the transient
problem of a concentrated line load that suddenly appeared on the surface of the elastic half-space and
subsequently moved at a constant speed. Eason [6] was one of the first few to solve a three-dimensional (3-D)
moving load problem using Fourier integral transforms. Gakenheimer [7] and Norwood [8] considered 3-D
transient problems of load applied suddenly to surface of elastic half-space and then moved at constant speed.
Calladine and Greenwood [9] considered half-space as made of an incompressible elastic material whose
modulus is linearly proportional to the depth from the free surface. By means of vertical particle displacement
approximation, De Hoop [10] analysed the transient case of an initially stationary load which moved at
subsonic or transonic speed on the surface of an elastic half-space. Jones and Petyt [11] studied transmission of
vibration on the surface of an elastic isotropic and homogenous half-space subjected to harmonic load acting
on a strip of finite width by means of dynamic stiffness matrix analysis. Sheng et al. [12] further considered
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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constant and oscillatory loads moving at constant velocity along a train track, and modelled the ground as
several visco-elastic layers over an elastic half-space.

Although analytical methods give exact (or nearly exact) solutions, they are limited in practical applications
due to the simplified geometry and conditions assumed. With the emergence of fast and low-cost computers,
numerical methods such as the finite element method (FEM) are preferred. De Barros and Luco [13] evaluated
the dynamic displacements of a multi-layered visco-elastic half-space subjected to a moving line load at
constant velocity using Fourier synthesis of the frequency response. By means of Helmholtz decomposition
and fast Fourier transform, Lefeuve-Mesgouez [14] investigated the transmission of vibration due to a moving
harmonic strip load rigidly attached to the surface of an elastic half-space. In the study of half-space subjected
to dynamic loads, Adam et al. [15] adopted both the FEM and boundary element method for 2-D problems.
Kim et al. [16] proposed a similar hybrid approach to model the layered half-space. To reduce the integration
range of wavenumbers in the fundamental solution, a semi-analytical approach was used.

A new numerical method called the moving element method (MEM) was proposed by Koh et al. [17] to
solve train-track problems in the 1-D framework. By discretising the rail beam into conceptual elements that
flow together with the moving train car, the proposed model eliminates the cumbersome need for keeping
track of the vehicle or load position with respect to the track model. In this paper, the concept is extended to
2-D moving elements in order to study moving load on continuum.

2. Formulation of the MEM

In the context of plane strain modelling, consider a load moving at a constant velocity V on an elastic half-
space as shown in Fig. 1. Let E, r and n be Young’s modulus, density and Poisson’s ratio, respectively, of the
half-space. A fixed coordinate system (x, y) is defined. In the numerical model, the half-space is truncated and
discretised into a finite number of moving elements as shown in Fig. 2. Elements marked with T are ‘‘typical’’
moving elements not in contact with the truncated boundary. Along the truncated boundary, infinite moving
elements are required to simulate the zero displacement condition at infinity. They are denoted as side
elements S1–S3, and corner elements C1 and C2 in Fig. 2. Each side element has one side mapping to infinity,
and each corner element has two ‘‘infinity’’ sides.

The MEM tackles several shortcomings of the FEM in handling moving load problems. Firstly, instead of
using the usual physical elements fixed to the continuum, moving elements are formulated in a coordinate
system moving at the velocity of the load. The position of the moving load thus becomes fixed at a particular
node in the moving element mesh, thereby avoiding the need to keep track of the loading point as required in
the FEM. As the moving load is fixed in the moving element mesh, non-uniform mesh can be utilised where
finer elements are used near the load and coarser elements further away. Secondly, the moving load will never
reach the boundary end of the numerical model since the model travels along with it, and hence the solution
will always be valid. Thirdly, the number of elements used in the MEM model is independent of the distance
traversed by the load in the time duration considered. Hence, the MEM requires comparatively lesser elements
and is more computationally efficient than the FEM does in general.

Quadrilateral eight-node (Q8) elements of the serendipity family are chosen in this study. All elements are
mapped to a master element defined in the natural coordinates (x, Z) system with nodal points numbered 1–8
P
V

x

y

E , �, �

Fig. 1. Plane strain model for moving load problem.
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Fig. 2. Element types in the truncated half-space model.
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Fig. 3. Q8 master element in the natural coordinates system.
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as shown in Fig. 3. Polynomial shape functionsfor the Q8 master element can be derived readily as

N1 ¼
1
4ð1þ xÞð1þ ZÞð�1þ xþ ZÞ;N2 ¼

1
4ð1� xÞð1þ ZÞð�1� xþ ZÞ,

N3 ¼
1
4
ð1� xÞð1� ZÞð�1� x� ZÞ;N4 ¼

1
4
ð1þ xÞð1� ZÞð�1þ x� ZÞ,

N5 ¼
1
2
ð1� x2Þð1þ ZÞ;N6 ¼

1
2
ð1� xÞð1� Z2Þ,

N7 ¼
1
2
ð1� x2Þð1� ZÞ;N8 ¼

1
2
ð1þ xÞð1� Z2Þ. ð1Þ

Using these shape functions, the displacements in the x- and y-directions, ux and uy, within each element are
interpolated from the nodal displacements

u ¼ N U , (2)

where N is a matrix containing the displacement shape functions,

N ¼
N1 0 N2 0 � � � N8 0

0 N2 0 N2 � � � 0 N8

" #
(3)

and U is the nodal displacement vector,

U ¼ ux1
uy1 ux2

uy2 � � � ux8
uy8

n oT

. (4)

The mapping of various element types to the master element is illustrated in Fig. 4, where dashed lines
indicate element sides mapped geometrically to infinity. For example, the left side of element S1 is mapped to
�N via x ¼ 2xa=ð1þ xÞ; similarly for elements S2, S3, C1 and C2.
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By invoking the strain–displacement interpolation � ¼ B U where

B ¼

qN1

qx
0

qN2

qx
0 � � �

qN8

qx
0

0
qN1

qy
0

qN2

qy
� � � 0

qN8

qy

qN1

qy

qN1

qx

qN2

qy

qN2

qx
� � �

qN8

qy

qN8

qx

2
66666664

3
77777775

(5)

and the stress–strain relationship s ¼ D �, an expression for the stress at any point within the element is
obtained in terms of the nodal displacements, i.e.

s ¼ D B U . (6)

In the plane strain model, the elasticity matrix D is given as

D ¼
Eð1� nÞ

ð1þ nÞð1� 2nÞ

1
n

1� n
0

n
1� n

1 0

0 0
1� 2n
2ð1� nÞ

2
6666664

3
7777775
. (7)

According to the principle of virtual work, for any compatible and small virtual displacements imposed on
the body, the total internal virtual work done (WI) must be equal to the total external virtual work done (WE).
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The internal virtual work can be expressed as

W I ¼ U
T
Z

A

BT D B dA

� �
U , (8)

where the over bar denotes the virtual system. Denoting the vectors for nodal forces, nodal velocities and
nodal accelerations as f , _U and €U , respectively, the external virtual work can be expressed as

W E ¼ U
T

f �

Z
A

U
T

NTr €U dA. (9)

To keep track of the load position, the moving coordinate system is defined as follows:

r ¼ x� Vt, (10)

where the origin of the r coordinate travels with the moving load at velocity V.
With the above coordinate transformation, we have the expressionsfor velocity and acceleration,

_U ¼
quðx; tÞ

qt
¼ �V

quðr; tÞ

qr
þ

quðr; tÞ

qt
, (11)

€U ¼ V2 q
2uðr; tÞ

qr2
� 2V

q2uðr; tÞ

qr qt
þ

q2uðr; tÞ
qt2

. (12)

Substituting Eq. (12) into Eq. (9) gives

W E ¼ U
T

f � V 2

Z
A

NTrN ;rr dA

� �
U þ 2V

Z
A

NTrN ;r dA

� �
_U �

Z
A

NTrN dA

� �
€U

� �
. (13)

Rearranging Eq. (13) givesZ
A

BT D B dAþ V2

Z
A

NTrN ;rr dA

� �
U � 2V

Z
A

NTrN ;r dA

� �
_U þ

Z
A

NTrN dA

� �
€U ¼ f . (14)

The above dynamic equation for the element can be expressed in the familiar form

K U þC _U þM €U ¼ F (15)

with the following equivalent mass, damping and stiffness matrices for the element:

K ¼

Z
A

BT D B dAþ V2

Z
A

NTrN ;rr dA, (16)

C ¼ �2V

Z
A

NTrN ;r dA, (17)

M ¼

Z
A

NTrN dA, (18)

where ( ),r denotes partial derivative with respect to r and ( ),rr denotes second partial derivative with
respect to r.

The load vector is defined as follows:

F ¼ f x1
f y1

f x2
f y2

� � � f xn f yn

� �T
, (19)

where f xn
is the nodal force in x-direction of nth node and f yn

is the nodal force in y-direction of nth node.
To account for material damping, Eq. (17) can be revised as

C ¼ Cdamping þ 2V

Z
A

NTrN ;r dA, (20)
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where, if Rayleigh damping is adopted,

Cdamping ¼ a0 M þa1 K . (21)

The element matrices are assembled in the usual way to form the corresponding system matrices (denoted by
subscript S) for the half-space model considered, leading to the following equationsof motion:

KSUS þ CS
_US þMS

€US ¼ FS, (22)

where FS contains many zeroes except at nodes where loads are applied. Since the loads travel with the moving
elements, the loaded nodes will remain unchanged. Both transient and steady-state solutions can be obtained
numerically by solving the above equations. For transient solution, step-by-step integration is required. It
should be noted that, while the formulation is based on loads moving at constant velocity, the numerical
method can be easily extended to deal with loads moving at varying velocity [17].

3. Numerical study

Table 1 summarises the five cases considered in the numerical study. The first four cases are studied for
steady-state solutions, whereas the last case deals with a transient problem. All the MEM results are compared
with available solutions. For steady-state cases corresponding to constant load travelling at constant velocity,
the equation of motion (15) is elegantly reduced to the following equivalent static problem and solved easily by
an equation solver:

KSUS ¼ F S. (23)

3.1. Point load moving on half-space (Case 1)

Consider a point load P travelling at 100m/s on an elastic half-space. To compare with the analytical
solution by Cole and Huth [2], the normalised vertical velocity at an observation depth is studied as defined
below:

_un ¼
md

PV
_u, (24)

where m is the shear modulus, d is the observation depth and P refers to the load applied (per unit length in the
z-direction). To avoid comparing with singularity solution that exists in the analytical solution at the point of
load application, the observation point is chosen at 10m below point of load application.

The size of the moving element model is 60m in the motion direction and 40m in the depth direction.
Uniform mesh is adopted for convergence study with three different element configurations: 20 (rows)� 18
(columns), 12� 40 and 20� 40. The number of rows is the number of elements used in the depth (vertical)
direction, and the number of columns is the number of elements used in the motion (horizontal) direction.
For illustration purpose, the normalised velocities obtained for the three different mesh sizes are compared in
Fig. 5. As shown in Fig. 5, the error decreases with the use of more moving elements. The numerical results
Table 1

Summary of cases considered in the numerical study

Case Load type (in plane

strain model)

Load velocity (m/s) Continuum Alternative solutions for

comparison

1 Point load 100 Half-space Cole and Huth [2]

2 Strip load 400 Half-space De Barros and Luco [13]

3 Strip load 400 A layer overlying half-space De Barros and Luco [13]

4 Strip load 600 Five layers overlying half-space De Barros and Luco [13]

5 Suddenly applied point

load

100 Half-space Ang [4]
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show that the MEM is in good agreement with the analytical solution when sufficient elements are used. The
good agreement serves to validate the MEM 2-D formulation and computer program developed.

For better computational efficiency, non-uniform mesh should be used. A mesh of non-uniform elements
can be generated such that refined elements are used where higher accuracy is required or where the solution
varies sharply, e.g. in the vicinity of load point. Nevertheless, this is not possible in the FEM since the load
moves across different elements at different times (unless re-meshing is carried out to follow the load location).
In addition, the load point would move outside the refined region since the load moves relative to the finite
elements. In contrast, the proposed MEM does not require re-meshing since the mesh is fixed in relation to the
moving load. In this regard, a finer mesh can be used near the load and coarser mesh away. The row heights of
the elements are varied by arithmetic progression as h, h(1+rh), h(1+2rh), y where the height of the topmost
row is h and the height is increased by hrh for each subsequent row. Similarly, the column widths are w,
w(1+rw), w(1+2rw), y, beginning from the two middle columns and increasing progressively to both sides in
a symmetric manner. The element configuration for the non-uniform mesh is 18� 28 with initial dimensions
h ¼ w ¼ 1:937m and increment ratios rh ¼ rw ¼ 0:0165. The normalised velocity results are presented in
Fig. 6, illustrating that the non-uniform mesh of 18� 28 elements with considerably lesser elements yields
about the same accuracy as the uniform mesh of 20� 40 elements.
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Fig. 7. Moving strip load on half-space (Case 2).
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3.2. Strip load moving on half-space (Case 2)

Consider a uniform strip load P moving at 400m/s on an elastic half-space, as illustrated in Fig. 7. The
numerical solution given by De Barros and Luco [13] is used as the benchmark for comparison, for which the
normalised vertical velocity _u� here is defined differently than Case 1:

_un ¼
md

PcS

_u, (25)

where cS is the shear wave velocity of the half-space. The observation point is defined at a depth (d) of 10m
below the midpoint of the moving strip load. In order to maintain a small column width near the two edges of
the strip load, the column width (w) of all moving elements is kept constant. Based on a moving element model
size of 150m (depth)� 220m (width), a convergence study is carried out for three element meshes, i.e.
26� 100, 30� 110 and 34� 120 elements, by varying the height of first row, h. The row heights of elements are
varied progressively according to rh ¼ 0:15. The normalised velocity at the observation point is plotted against
the moving coordinate in Fig. 8. It is seen that the MEM results converge and are in good agreement with the
solution obtained by De Barros and Luco [13].
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Though elements with geometric mapping to infinity are used along the boundary of the truncated model,
the numerical model is still an approximation for the half-space in general. To study the truncation effect of
model size, three sizes are used: 115m� 200m, 147m� 220m and 182m� 240m. Based on a fixed element
size with initial row height h ¼ 1:538m and element width w ¼ 2m, the normalised velocities are plotted
against the moving coordinate in Fig. 9. The MEM results converge towards the numerical solution as the
model size increases.

3.3. Strip load on a layer overlying half-space (Case 3)

The MEM can be applied to moving load on layered medium. As an illustration, consider a layer of 5m
depth overlying half-space with parameters as shown in Fig. 10. The strip load P spreading across width
L ¼ 80m moves at 400m/s, as considered by De Barros and Luco [13]. The normalised velocity _un at 10m
below the moving strip load is calculated according to Eq. (25), in which the shear velocity of the medium at
the observation point is used.

As in the previous example, the column width is kept constant for strip load. The row heights of element are
varied downwards according to arithmetic progression. Based on a model size of 133m� 240m, two different
element sizes are studied by varying the numerical parameters: (a) w ¼ 1:81m (constant), h ¼ 1:07m and
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Fig. 9. MEM results based on three different model sizes for Case 2 (strip load on half-space).
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Fig. 10. Moving strip load on one layer overlying half-space (Case 3).
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rh ¼ 0:11; and (b) w ¼ 1:90m (constant), h ¼ 1:33m and rh ¼ 0:25. As shown in Fig. 11, the two different
element meshes yield similar results which agree reasonably well with the numerical solution given by De
Barros and Luco [13]. The discrepancy is not unexpected in view of the approximate nature of our solution
and the solution by De Barros and Luco (both are obtained numerically).

The larger element size is used for the subsequent mesh-size convergence study. Using a fixed element size
with h ¼ 1:33m and rh ¼ 0:25 and constant width of 2m, a mesh truncation study is carried out with different
mesh sizes of 133m� 240m, 163m� 282m and 196m� 320m. The normalised velocities are again plotted
against the moving coordinate (r) in Fig. 12. The MEM results converge towards the numerical solution as the
model size increases.

3.4. Strip load moving on multi-layered half-space (Case 4)

As an extension of Case 3, consider a strip load (P) spreading across a width of 120m and moving on a
multi-layered half-space at constant velocity of 600m/s. There are five layers of 1m thick each overlying a
stratum of stiffer material (half-space). All layers and the stratum have the same density of 2000 kg/m3 and
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Table 2

Material properties of five layers and stratum (half-space) used in Case 4

Young’s modulus, E (N/m2) Shear wave velocity (m/s)

Layer 1 2.13� 108 200

Layer 2 1.20� 109 475

Layer 3 2.43� 109 675

Layer 4 3.63� 109 825

Layer 5 4.56� 109 925

Stratum 5.33� 109 1000

V = 600 m/s

P = 1 kN/m

Fig. 13. Moving element mesh used in Case 4 (five layers on half-space).
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Poisson’s ratio of 1/3. Young’s moduli and shear wave speeds are shown in Table 2. It is noted that the load
speed of 600m/s is larger than the shear wave speeds of the first two layers. The values of the normalised
velocity _u� for an observation point 10m below the moving strip load are calculated according to Eq. (29), in
which the shear velocity of the underlying stratum at the observation point is used.

Similar to the previous cases for strip load, the element width (w) is kept constant and 1.5m is used. Five
element rows of 1m height each are used to model the five layers above the stratum. For the stratum, non-
uniform row heights are used according to h ¼ 1:39m and rh ¼ 0:20. The moving element mesh is depicted in
Fig. 13. Three different model depths of 123, 176 and 219m are studied, while the model width is kept constant
at 220m. The normalised velocity is plotted against the moving coordinate in Fig. 14. It is seen that the MEM
results converge towards the numerical solution by De Barros and Luco [13] as the model depth increases.

3.5. Transient problem—suddenly applied moving load (Case 5)

To illustrate the feasibility of the MEM in tackling transient problems, consider a load P ¼ 1 kN (per metre
in the z-direction) that is suddenly applied at time t ¼ 0 on the half-space at x ¼ 0 and thereafter moving at
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100m/s in the positive x-direction. The transient solution is obtained by numerically solving Eq. (22) in a step-
by-step manner [17] and compared with the analytical solution obtained by Ang [4]. It should be noted that the
analytical solution contains singularity in stresses.

Due to the sudden appearance of the load, the transient problem involves wave front propagation. Thus, very
small time step and elements are required to capture the peak stresses associated with the arrival of wave fronts in
the forward and backward directions. Based on a convergence study, the following mesh size is adopted:
45m� 80m with w ¼ 2:09m, rw ¼ 0:075 and constant element height of 1m. Three time steps are considered:
0.00015, 0.00030 and 0.00050 s. Fig. 15 presents the results for the vertical stress (sy10) at 10m below the point
load at t ¼ 0:009 s as an illustration. It is noted that, as the time step reduces, the numerical solution approaches
the analytical solution, except for the two singularity points as marked by crosses in the figure.

4. Conclusions

In this paper, the MEM has been shown to be an elegant numerical method for solving 2-D moving load
problems. By having elements moving with the load through the continuum, the MEM overcomes the
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cumbersome task of tracking the load and the moving load will never reach the artificial boundary unlike in
methods that use a fixed truncated domain for the half-space. The proposed method converts the steady-state
moving load problem into an equivalent static problem which can be solved more efficiently than solving
dynamic equations. It also facilitates the use of non-uniform mesh without the need of re-meshing. The five
numerical examples illustrate the versatility and accuracy of the MEM in obtaining steady-state and transient
solutions. The method can be easily applied to moving load problems in full space. Furthermore, while only
plane strain model is considered here, the formulation can be readily modified to tackle moving load problems
in plane stress and even 3-D frameworks.
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